
BOTTOM-UP ARCHITECTURE
BRIDGING THE ARCHITECTURE CODE GAP
Oliver Drotbohm ! oliver.drotbohm@broadcom.com! " # odrotbohm

We want to build
evolvable systems.

Co
m

pl
ex

ity

…while the actual

challenge is this.Most teams

focus on that…

1.0 1.21.1 2.0

! "
Understandability

Chunking

Hierarchization

Pattern languages

" #

Abstraction

Vocabulary

Pattern
languages

Level of detail
Encapsulation

Domain terms

Concepts & Rules

Extensional

Intensional

Enumerated

Specified

Architecturally-
Evident Code? !

Deployables / Build modules / Packages

Classes, methods, fields!

!

!

Ex
te

ns
io

na
l

In
te

ns
io

na
l

 Naming conventions

What else?"

Invoicing,
Shipment

Components / Modules

EmailAddress,
ZipCode

Domain language

ConceptsValueObject,
Entity,

Aggregate

Layers,
Rings

Concepts & Rules

Architecture

Design

DDD Events

Strategic

Bounded Contexts

Context Maps

Modules

Tactical

Reposi tories

Aggregates

Ent i t ies

Value Objects

Architecture

Event Listeners

Events

Layers

Rings

Ports

Adap ters

Commands

Queries

Architecture

Design

DDD

Strategic

Bounded Contexts

Context Maps

Modules

Tactical

Reposi tories

Aggregates

Ent i t ies

Value Objects

A simple Aggregate arrangement

Orders
Customers

«Aggregate»
Order

id: OrderId
lineItems: List<LineItem>
customer: Customer

«Entity»
LineItem

amount: int
price: MonetaryAmount

«Aggregate»
Customer

id: CustomerId

contains

1

1..*

belongs to* 1

A simple Aggregate arrangement

Orders
Customers

«Aggregate»
Order

id: OrderId
lineItems: List<LineItem>
customer: Customer

«Entity»
LineItem

amount: int
price: MonetaryAmount

«Aggregate»
Customer

id: CustomerId

contains

1

1..*

belongs to* 1

!
This and that

imply that

this is wrong! #

"

MATCH
 (repo:Java:Type)
 -[:IMPLEMENTS_GENERIC]-# (superType)
 -[:OF_RAW_TYPE]-# (:Java:Type { fqn: "o.s.d.r.Repository"}),
 (superType)
 -[:HAS_ACTUAL_TYPE_ARGUMENT { index: 0 }]-# ()
 -[:OF_RAW_TYPE]-# (aggregateType)
SET
 aggregateType:Aggregate
RETURN
 repo, aggregateType

Establishing an Aggregate… in jQAssistant

MATCH
 (aggregate:Aggregate)
 -[:DECLARES]-# (f:Field)
 -[:OF_TYPE]-# (fieldType:Aggregate)
WHERE
 aggregate <& fieldType
RETURN
 aggregate, fieldType

Establishes the concep t Establishes the rule

Reference to

tech stack $

@AnalyzeClasses(packagesOf = Application.class)
public class ArchitectureTest {

 @ArchTest
 void verifyAggregates(JavaClasses types) {

 var aggregates = new AggregatesExtractor();
 var aggregateTypes = aggregates.doTransform(types);

 all(aggregates)
 .should(notReferToOtherAggregates(aggregateTypes))
 .check(types);
 }
}

Establishing an Aggregate… in ArchUnit

Establishes

the concep t

Establishes

the rule

"
Tools

#
Frameworks

$
User Code

%
Concepts

&
Rules

Code Architecture Technology

'

$ "

%

&

#

Responsibility
of definition

Means
of definition

$ "

'

%

(

Responsibility
of definition

&

#

xMolecules

jMolecules

!
Explicit concepts

@Entity
@NoArgsConstructor(force = true)
@EqualsAndHashCode(of = "id")
@Table(name = "SAMPLE_ORDER")
@Getter
public class Order {

 private final @EmbeddedId OrderId id;

 @OneToMany(cascade = CascadeType.ALL)
 private List<LineItem> lineItems;
 private CustomerId customerId;

 public Order(CustomerId customerId) {
 this.id = OrderId.of(UUID.randomUUID());
 this.customerId = customerId;
 }

 @Value
 @RequiredArgsConstructor(staticName = "of")
 @NoArgsConstructor(force = true)
 public static class OrderId implements Serializable {
 private static final long serialVersionUID = …;
 private final UUID orderId;
 }
}

@Entity
@NoArgsConstructor(force = true)
@EqualsAndHashCode(of = "id")
@Table(name = "SAMPLE_ORDER")
@Getter
public class Order implements o.j.d.t.AggregateRoot<Order, OrderId> {

 private final @EmbeddedId OrderId id;

 @OneToMany(cascade = CascadeType.ALL)
 private List<LineItem> lineItems;
 private CustomerId customerId;

 public Order(CustomerId customerId) {
 this.id = OrderId.of(UUID.randomUUID());
 this.customerId = customerId;
 }

 @Value
 @RequiredArgsConstructor(staticName = "of")
 @NoArgsConstructor(force = true)
 public static class OrderId implements o.j.d.t.Identifier {
 private static final long serialVersionUID = …;
 private final UUID orderId;
 }
}

$
Verification

Verifying a jMolecules Aggregate … in jQAssistant
<plugin>
 <groupId>com.buschmais.jqassistant<'groupId>
 <artifactId>jqassistant-maven-plugin<'artifactId>
 <version>…<'version>
 <executions>
 <execution>
 <id>default-cli<'id>
 <goals>
 <goal>scan<'goal>
 <goal>analyze<'goal>
 <'goals>
 <configuration>…<'configuration>
 <'execution>
 <'executions>
 <dependencies>
 <dependency>
 <groupId>org.jqassistant.contrib.plugin<'groupId>
 <artifactId>jqassistant-jmolecules-plugin<'artifactId>
 <version>…<'version>
 <'dependency>
 <'dependencies>
<'plugin>

Simply execute the

predefined rules

@AnalyzeClasses(packagesOf = Application.class)
class ArchitectureTests {

 @ArchTest
 ArchRule ddd = JMoleculesDddRules.all();
}

Verifying a jMolecules Aggregate … in ArchUnit

Simply execute the

predefined rules

Invalid aggregate root reference!
Use identifier or Association instead!☝

%
Eliminate

boilerplate

Infrastructure

Application

Domain #$

• Spring Framework
• JPA
• Jackson

%

&

@Entity
@NoArgsConstructor(force = true)
@EqualsAndHashCode(of = "id")
@Table(name = "SAMPLE_ORDER")
@Getter
public class Order {

 private final @EmbeddedId OrderId id;

 @OneToMany(cascade = CascadeType.ALL)
 private List<LineItem> lineItems;
 private CustomerId customerId;

 public Order(CustomerId customerId) {
 this.id = OrderId.of(UUID.randomUUID());
 this.customerId = customerId;
 }

 @Value
 @RequiredArgsConstructor(staticName = "of")
 @NoArgsConstructor(force = true)
 public static class OrderId implements Serializable {
 private static final long serialVersionUID = …;
 private final UUID orderId;
 }
}

JPA-induced

boilerplate

Model characterist ics

expressed implici t ly

or through

technical means

@Entity
@NoArgsConstructor(force = true)
@EqualsAndHashCode(of = "id")
@Table(name = "SAMPLE_ORDER")
@Getter
public class Order implements AggregateRoot<Order, OrderId> {

 private final @EmbeddedId OrderId id;

 @OneToMany(cascade = CascadeType.ALL)
 private List<LineItem> lineItems;
 private Association<Customer, CustomerId> customer;

 public Order(CustomerId customerId) {
 this.id = OrderId.of(UUID.randomUUID());
 this.customer = Association.forId(customerId);
 }

 @Value
 @RequiredArgsConstructor(staticName = "of")
 @NoArgsConstructor(force = true)
 public static class OrderId implements Identifier {
 private static final long serialVersionUID = …;
 private final UUID orderId;
 }
}

@Entity
@NoArgsConstructor(force = true)
@EqualsAndHashCode(of = "id")
@Table(name = "SAMPLE_ORDER")
@Getter
public class Order implements AggregateRoot<Order, OrderId> {

 private final @EmbeddedId OrderId id;

 @OneToMany(cascade = CascadeType.ALL)
 private List<LineItem> lineItems;
 private Association<Customer, CustomerId> customer;

 public Order(CustomerId customerId) {
 this.id = OrderId.of(UUID.randomUUID());
 this.customer = Association.forId(customerId);
 }

 @Value
 @RequiredArgsConstructor(staticName = "of")
 @NoArgsConstructor(force = true)
 public static class OrderId implements Identifier {
 private static final long serialVersionUID = …;
 private final UUID orderId;
 }
}

[INFO] □─ example.order.Order
[INFO] ├─ JPA - Adding @j.p.Entity.
[INFO] ├─ JPA - Adding default constructor.
[INFO] ├─ JPA - Adding nullability verification using new callback methods.
[INFO] ├─ JPA - Defaulting id mapping to @j.p.EmbeddedId().
[INFO] ├─ JPA - Defaulting lineItems mapping to @j.p.JoinColumn(…).
[INFO] ├─ JPA - Defaulting lineItems mapping to @j.p.OneToMany(…).
[INFO] ├─ Spring Data JPA - Implementing o.s.d.d.Persistable<e.o.Order$OrderIdentifier>.
[INFO] └─ Spring JPA - customer - Adding @j.p.Convert(converter=…).

Meanwhile in your IDE…

@Entity
@NoArgsConstructor(force = true)
@EqualsAndHashcode(of = "id")
@Table(name = "SAMPLE_ORDER")
@Getter
public class Order {

 private final @EmbeddedId OrderId id;

 @OneToMany(cascade = CascadeType.ALL)
 private List<LineItem> lineItems;
 private CustomerId customerId;

 public Order(Customer customer) {
 this.id = OrderId.of(UUID.randomUUID());
 this.customerId = customer.getId();
 }

 @Value
 @RequiredArgsConstructor(staticName = "of")
 @NoArgsConstructor(force = true)
 public static class OrderId implements Serializable {
 private static final long serialVersionUID = …;
 private final UUID orderId;
 }
}

@Table(name = "SAMPLE_ORDER")
@Getter
public class Order implements AggregateRoot<Order, OrderId> {

 private final OrderId id;
 private List<LineItem> lineItems;
 private Association<Customer, CustomerId> customer;

 public Order(CustomerId customerId) {
 this.id = OrderId.of(UUID.randomUUID());
 this.customer = Association.forId(customerId);
 }

 @Value(staticConstructor = "of")
 public static class OrderId implements Identifier {
 private final UUID orderId;
 }
}

&
Separation of Concerns

Architectures

InfrastructureApplicationDomain

'

()

Application

Domain

Infrastructure

'

()

Application

Domain

Infrastructure

'

()

Application

Domain

Infrastructure

Domain

'

()

Domain

Domain

Application

Infrastructure

'

()

Domain

Application

Infrastructure

'

()

Domain

Application

'

!)

Infrastructure

Domain

Application

'

()

Infrastructure

Domain

Application

Infrastructure

'

'

'

() () !)

InfrastructureInfrastructure

Domain DomainDomain

Application ApplicationApplication

Infrastructure

'

'

'

*
+

() () !)

*

*

InfrastructureInfrastructure

Domain DomainDomain

Application ApplicationApplication

Infrastructure

ModuleModule Module

' # '# '

*
+

() () !)

*

*

Spring Modulith

package com.acme.modulith

@SpringBootApplication
class MyApplication { … }

Standard Spring Boot Application

Package Conventions

, ….modulith
, ….modulith.moduleA
, ….modulith.moduleA.internal
, ….modulith.moduleB
, ….modulith.moduleB.internal

Access to components
residing in internal packages
forbidden and checked
during tests.

API packages

package com.acme.modulith

@SpringBootApplication
class MyApplication { … }

var modules =
 ApplicationModules.of(MyApplication.class);
modules.verify(…);

Standard Spring Boot Application

Verifies rules for MyApplication

Web

Business logic

Data access
@Data…Test

Module A Module B Module C

@WebMvcTest

@ApplicationModuleTest

My Component

Provided Interface

) Exposed Service API
Spring Beans available for DI

) Exposed Aggregates
Primary elements of the domain and constraints

) Published Events
Events the component emits

Required Interface

) Consumed Service API
External dependencies of Spring beans

) Configuration
Spring Boot configuration properties

) Consumed Events
Events that the component reacts to

Salespoint

«Component: Module»
Salespoint :: Accountancy

«Component: Module»
Salespoint :: Catalog

«Component: Module»
Salespoint :: Inventory

«Component: Module»
Salespoint :: Order

«Component: Module»
Salespoint :: Payment

«Component: Module»
Salespoint :: Quantity

«Component: Module»
Salespoint :: Storage

«Component: Module»
Salespoint :: Time

«Component: Module»
Salespoint :: User Account

listens t o

depends onuses depends on

depends on

depends on

listens t o

depends on depends on depends on

depends on

uses depends on depends on

Salespoint

«Component: Module»
Salespoint :: Accountancy

«Component: Module»
Salespoint :: Catalog

«Component: Module»
Salespoint :: Inventory

«Component: Module»
Salespoint :: Order

«Component: Module»
Salespoint :: Payment

«Component: Module»
Salespoint :: Quantity

«Component: Module»
Salespoint :: Storage

«Component: Module»
Salespoint :: Time

«Component: Module»
Salespoint :: User Account

listens t o

depends onuses depends on

depends on

depends on

listens t o

depends on depends on depends on

depends on

uses depends on depends on

Salespoint :: Inventory

«Component: Module»
Salespoint :: Catalog

«Component: Module»
Salespoint :: Inventory

«Component: Module»
Salespoint :: Order

«Component: Module»
Salespoint :: Quantity

depends on

depends on

listens t o

depends ondepends on

depends on

Salespoint

«Component: Module»
Salespoint :: Accountancy

«Component: Module»
Salespoint :: Catalog

«Component: Module»
Salespoint :: Inventory

«Component: Module»
Salespoint :: Order

«Component: Module»
Salespoint :: Payment

«Component: Module»
Salespoint :: Quantity

«Component: Module»
Salespoint :: Storage

«Component: Module»
Salespoint :: Time

«Component: Module»
Salespoint :: User Account

listens t o

depends onuses depends on

depends on

depends on

listens t o

depends on depends on depends on

depends on

uses depends on depends on

Salespoint :: Inventory

«Component: Module»
Salespoint :: Catalog

«Component: Module»
Salespoint :: Inventory

«Component: Module»
Salespoint :: Order

«Component: Module»
Salespoint :: Quantity

depends on

depends on

listens t o

depends ondepends on

depends on

Summary

Architectural concepts…
… are explicitly expressed in the code.

… are predefined based on established pattern languages.

… are defined by jMolecules (concepts)
and tool & framework integration (rules).

Architecturally Evident Applications
– How to Bridge the Model-Code Gap?

Oliver Drotbohm (odrotbohm@vmware.com) in collaboration with
Henning Schwentner (henning.schwentner@wps.com) & Stephan Pirnbaum (stephan.pirnbaum@buschmais.de)

February 2022

Abstract
Over the course of its lifetime, every non-trivial piece of
soȤware will signiȡcantly grow in complexity. The
extent of that growth signiȡcantly aȘects the ability to
evolve it to avoid having to replace it with a costly
rewrite eventually. Thus, managing that complexity has
been the topic of interest in the soȤware community, and
architectural and design pattern languages have been
identiȡed as a means to achieve that. But even if the
conceptual models of an application use that language, a
fundamental challenge remains: how to express those
abstract concepts in the actual codebase?

This paper explores a novel approach that enables
developers to explicitly express architectural and design
concepts in application code, which ultimately enables:

● Understandability – By ȡnding the architectural
language in code, it is easier for developers to
understand the code base, relate individual elements
of it to the bigger picture and, ultimately, make
architecture more accessible.

● Documentation – With abstract concepts present in the
code base, we can extract documentation about it that
is correct by deȡnition and describes it at an
architectural abstraction level.

● VeriȢcation – We can verify that our implementation
adheres to the rules associated with the concepts that
the individual elements of the code base implement at
diȘerent levels of architectural abstraction.

● Reduction of boilerplate code – At the application
boundaries, domain model elements have to be
persisted into some data store or exposed to clients by
APIs. Architectural concepts, directly expressed in
those elements, allow transparently defaulting such
mappings into popular implementation technologies.

This paper presents the fundamental idea in detail, as
well as a Java library to express architectural and design
concepts, and contrasts it to alternative approaches. It
concludes with a presentation of the support of that
library in a variety of associated integration technologies
to implement the aspects described above.

Introduction
Bridging the gap between architectural patterns and
code bases has been an ongoing challenge when writing

long-living business soȤware. We would like to present
an approach to express these patterns directly in code by
using programming-language-speciȡc means and
describe how that approach becomes an enabler to create
code that is more expressive, more understandable,
more correct and ultimately easier to change. The paper
uses Java as an example because it is a very ubiquitous
language in enterprise applications. However, the
approach can be transferred to other languages, too.

Over the last 1.5 years, a prototypical implementation
has been implemented in a cross-company collaboration
eȘort between VMware, WPS Solutions (Hamburg), and
BUSCHMAIS (Dresden). It can be found under a project
named jMolecules on GitHub [jmolecules].

Fundamentally, we need a mechanism to express
architectural artifacts in the codebase. In Java, two
primary language constructs are great candidates to
achieve this: annotations and types. We will have a
detailed look at the pros and cons of each later.
jMolecules currently provides annotations for the
following architectural concepts: the Domain-Driven
Design (DDD) building blocks described in [evans03],
events and event listeners, and the parts of particular
architectural styles, such as onion architecture
[palermo08], layered architecture, and CQRS systems.
The DDD and event concepts are also available as Java
interfaces alternatively.

Developers can refer to the concept library in their
application build ȡles so that the architectural
deȡnitions become an inherent part of the code base.
This results in more expressive code that has a more
direct connection to the architectural model in the ȡrst
place and, thus, supports understanding the
implementation. The metadata available within the code
enables extensive integration with external technology
to verify the implementation against the model
expressed in the code and extract architecture and
developer documentation. To run on ubiquitous
technical platforms (such as Spring Framework [spring])
and integrate seamlessly with persistence technology
(such as the Jakarta Persistence API (JPA) [jpa] or
commonly used serialization APIs like Jackson
[jackson]), domain code usually has to be augmented
with boilerplate code, like annotations or additional
models which signiȡcantly increases the accidental
complexity of applications.

Architecturally Evident Applications
– How to Bridge the Model-Code Gap?

Oliver Drotbohm (odrotbohm@vmware.com) in collaboration with
Henning Schwentner (henning.schwentner@wps.com) & Stephan Pirnbaum (stephan.pirnbaum@buschmais.de)

February 2022

Abstract
Over the course of its lifetime, every non-trivial piece of
soȤware will signiȡcantly grow in complexity. The
extent of that growth signiȡcantly aȘects the ability to
evolve it to avoid having to replace it with a costly
rewrite eventually. Thus, managing that complexity has
been the topic of interest in the soȤware community, and
architectural and design pattern languages have been
identiȡed as a means to achieve that. But even if the
conceptual models of an application use that language, a
fundamental challenge remains: how to express those
abstract concepts in the actual codebase?

This paper explores a novel approach that enables
developers to explicitly express architectural and design
concepts in application code, which ultimately enables:

● Understandability – By ȡnding the architectural
language in code, it is easier for developers to
understand the code base, relate individual elements
of it to the bigger picture and, ultimately, make
architecture more accessible.

● Documentation – With abstract concepts present in the
code base, we can extract documentation about it that
is correct by deȡnition and describes it at an
architectural abstraction level.

● VeriȢcation – We can verify that our implementation
adheres to the rules associated with the concepts that
the individual elements of the code base implement at
diȘerent levels of architectural abstraction.

● Reduction of boilerplate code – At the application
boundaries, domain model elements have to be
persisted into some data store or exposed to clients by
APIs. Architectural concepts, directly expressed in
those elements, allow transparently defaulting such
mappings into popular implementation technologies.

This paper presents the fundamental idea in detail, as
well as a Java library to express architectural and design
concepts, and contrasts it to alternative approaches. It
concludes with a presentation of the support of that
library in a variety of associated integration technologies
to implement the aspects described above.

Introduction
Bridging the gap between architectural patterns and
code bases has been an ongoing challenge when writing

long-living business soȤware. We would like to present
an approach to express these patterns directly in code by
using programming-language-speciȡc means and
describe how that approach becomes an enabler to create
code that is more expressive, more understandable,
more correct and ultimately easier to change. The paper
uses Java as an example because it is a very ubiquitous
language in enterprise applications. However, the
approach can be transferred to other languages, too.

Over the last 1.5 years, a prototypical implementation
has been implemented in a cross-company collaboration
eȘort between VMware, WPS Solutions (Hamburg), and
BUSCHMAIS (Dresden). It can be found under a project
named jMolecules on GitHub [jmolecules].

Fundamentally, we need a mechanism to express
architectural artifacts in the codebase. In Java, two
primary language constructs are great candidates to
achieve this: annotations and types. We will have a
detailed look at the pros and cons of each later.
jMolecules currently provides annotations for the
following architectural concepts: the Domain-Driven
Design (DDD) building blocks described in [evans03],
events and event listeners, and the parts of particular
architectural styles, such as onion architecture
[palermo08], layered architecture, and CQRS systems.
The DDD and event concepts are also available as Java
interfaces alternatively.

Developers can refer to the concept library in their
application build ȡles so that the architectural
deȡnitions become an inherent part of the code base.
This results in more expressive code that has a more
direct connection to the architectural model in the ȡrst
place and, thus, supports understanding the
implementation. The metadata available within the code
enables extensive integration with external technology
to verify the implementation against the model
expressed in the code and extract architecture and
developer documentation. To run on ubiquitous
technical platforms (such as Spring Framework [spring])
and integrate seamlessly with persistence technology
(such as the Jakarta Persistence API (JPA) [jpa] or
commonly used serialization APIs like Jackson
[jackson]), domain code usually has to be augmented
with boilerplate code, like annotations or additional
models which signiȡcantly increases the accidental
complexity of applications.

! @mawspring! @mawspring

Links
* xMolecules

https://xmolecules.org

* jMolecules
https://jmolecules.org

* jMolecules Examples
https://github.com/xmolecules/jmolecules-examples

* Gitter – Join the community!
https://gitter.im/xmolecules/xmolecules

https://xmolecules.org
https://jmolecules.org
https://github.com/xmolecules/jmolecules-examples
https://gitter.im/xmolecules/xmolecules

Resources
* Software Architecture for Developers

Simon Brown – Books

* Just Enough Software Architecture
George Fairbanks – Book

* Architecture, Design, Implementation
Ammon H. Eden, Rick Kazman – Paper

* Sustainable Software Architecture
Carola Lilienthal – Book

* The Programmer's Brain
Felienne Hermans – Book

https://leanpub.com/b/software-architecture
https://www.amazon.de/Just-Enough-Software-Architecture-Risk-Driven/dp/0984618104
https://resources.sei.cmu.edu/asset_files/WhitePaper/2003_019_001_29559.pdf
https://www.amazon.de/Sustainable-Software-Architecture-Analyze-Technical/dp/3864906733
https://www.amazon.de/Programmers-Brain-Every-Programmer-Cognition/dp/1617298670/ref=sr_1_1?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=3AVV87XAXBK8E&keywords=the+programmer's+brain+hermans&qid=1642693390&sprefix=the+programmer's+brain+hermans,aps,91&sr=8-1

Thank you!
Questions? Paper Book

Oliver Drotbohm ! oliver.drotbohm@broadcom.com! " # odrotbohm

