'f

———

' i \\/f/hliiuw w i lll !

BOTTOM-UP ARCHI TECTURE
BRIDGING THE ARCHITECTURE CODE GAP

Oliver Drotbohm W () @ odrotbohm B oliver.drotbohm@broadcom.com

e®e® ([J+v < > Q & github.com/odrotbohm < ﬂ] +
_ o
= O odrotbohm Q Type (/) to search >- +- 0O & @
[J Overview L[] Repositories 123] Projects 1 @ Packages Yy Stars 77
Pinned Customize your pins
(] xmolecules/jmolecules | Public 3] xmolecules/jmolecules-integrations Public
Libraries to help developers express architectural abstractions in Java Technology integration for jMolecules
code
Q@Java w979 Y85 Q@Java Yr48 ¥
B lectures | Public 3 B spring-restbucks | Public
Lecture scripts and slides | use during the Software Engineering course Implementation of the sample from REST in Practice based on Spring
B at TU Dresden projects
@Java Yr68 Y22 @Java Yr12k %404
Oliver Drotbohm (] spring-playground | Public 3] spring-projects/spring-modulith | Public
Od rOtbOhm ’ he/hlm A collection of tiny helpers for building Spring applications Modular applications with Spring Boot
Frameworks & Architecture Engineering ®Java 196 T 10 @Java Tr531 Y67
@ VMware, OpenSource enthusiast, all
things Spring, Java, data, DDD, REST,
software arChiteCturer drums & music. @ Single sign-on to see contributions within the pivotal organization.
Edit profile 1,559 contributions in the last year Contribution settings v 2022
Ax 3.4k followers - 32 following Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 2021
O O Seeeere (] O O O
Mon C Ik Il 1 LR R0 g aee eeeres SO0 EE BT EE
VMware 808008 eee 888 OOOH Pem ® ST ooooOOEES aeeererens 2020
Wed @808 0808 B ODEEES (L R L1 It I DX Isf] I aee
© Dresden, Germany . eSS SESSE S8 (8 SSEESE 0 S0 SECEEE0 08 00808
. . Frie @ ® 980 008 O 88ese see® @0 o Jores PR rgg 2019
® 17:49 (UTC +01:00) B EECEEC LT T S D 1T EEEE I 1
9 info@odrotbohm.de Learn how we count contributions Less © @@ More 2018
& www.odrotbohm.de
Y ©@odrotbohm C @spring-projects @ @st-tu-dresden 4 @xmolecules More 2017
@ @odrotbohm@chaos.social
Activity overview 1% 2016
e odrotbohm y Code review
[injodrotbohm (] Contributed to 2015

We want to build
evolvable systems.

Complexity

Most teams
focus on that..

1.0

1.7

1.2

2.0

Wl

;V\a

e the actual
enge 1s this.

Fada Y ‘<r>’
v -

D o

Understandability

\éVOOLRJ(rlLé\&E dpunkt.verlag

Carola Lilienthal

Sustainable
Software
Architecture

Analyze and Reduce Technical Debt

L AR rAr ey

\SI‘VCSJE?LIJ(TI_’IL(I)-\&:E dpunkt.verlag

Chunking

Hierarchization

Carola Lilienthal

Sustainable
Software
Architecture

Pattern languages

Analyze and Reduce Technical Debt

Ay

JUST ENOUGH
SOFTWARE ARCHITECTURE

A RISK-DRIVEN APPROACH
GEORGE FAIRBANKS

FOREWORD BY DAVID GARLAN

- N\
p— g S P, \

Wyt
. ' .“
Y
. TN
v NNVl
) K
O N Ay
il BYRA
N A ‘,'
oy 1y
“ ' 17",
o v .
W R
18 ¥
\
A"’I |
\ ‘_(,v
% .
’
< /|

A L OIS

AN DDIVATNG

ST\

Y // % LR N IV 25 -7 > 2

Level of detail
Encapsulation

Domain terms

Concepts & Rules

Abstraction

Vocabulary

Pattern
languages

Enumerated

Specified

Architecturally-
Evident Code?

Components / Modules

Invoicing,
Shipment

Domain language

EmailAddress,
ZipCode

Deployables / Build modules [Packages

Classes, methods, fields

Concepts & Rules

ValueObject,
Entity,

Aggregate Naming conventions

What else? 9

Layers,
Rings

Architecture

Design

Strategic

Bounded Contexts
Confext Maps
Modules

Tactical

Kepositories
Aggreqates

Entities
Vaolue Objects

DDD

Event Listeners

Events

Events

Layers
King

Por:

Adap

S
ers

Commands
Queries

Architecture

Architecture

Design

Tactical

Keposifories
Agareqates

Enfities
Vaolue Objects

DDD

Orders\

Customers\

‘ «Aggregate»
Order]) @«Aggregate»

_ *[belongs to Customer
O id: Orderld

O lineltems: List<Lineltem> O id: Customerld
O customer; Customer

b

contains

1..”
Y
«Entity»
Lineltem

O amount: int
O price: MonetaryAmount

A simple Aggregate arrangement

Orders\ ﬁ(‘ (\

Customers\

x|belongs to

‘ «Aggregate»
Order]> @«Aggregate» |

. Customer

O id: Orderld

O lineltems: List<Lineltem> O id: Customerld

O customer: Customer (
’ - \
1 |

contains B
1 * his and that

Y .

«Entity» Vv\7|y ﬂﬂﬂf
nefem " this is wrong

O amount: int
O price: MonetaryAmount

A simple Aggregate arrangement

@ArchUnit
JOQAssistant

Your Software. Your Structures. Your Rules.

Establishing an Aggregate... in JQAssistant

MATCH
(repo:Java:Type)
-[: IMPLEMENTS_GENERIC]— (superType)
-[:OF_RAW_TYPE]— (:Java:Type { fgn: "o.s.d.r.Repository"}),
(superType) N\
-[:HAS_ACTUAL_TYPE_ARGUMENT { index: @ }1— ()

MATCH
(aggregate:Aggregate)
-[:DECLARES]— (f:Field)
-[:OF_TYPE]— (fieldType:Aggregate)

WHERE
-[:OF_RAW_TYPE]— (aggregateType) aggregate < fieldType
SE; regatelype:Aggregate | RETURN
RETﬁﬁN g ype:Aggres Zeference 1o aggregate, fieldType
repo, aggregateType fech stack @

Estaplishes the concept Establishes fhe rule

Establishing an Aggregate... in ArchUnit

mAnalyzeClasses(packagesOf = Application.class)
public class ArchitectureTest {

AArchTest B Ectablishes

void verifyAggregates(JavaClasses types) f{

- fhe concept
var aggregates = new AggregatesExtractor(); L=
var aggregateTypes = aggregates.doTransform(types);
all(aggregates)
.should(notReferToOtherAggregates(aggregateTypes)) Y .
.check(types); N—— Eé’mblléhﬁé
} fhe rule

User Code Concepts Rules Tools Frameworks

Code Architecture Technology

Responsibility
of definition

Means
of definition

Responsibility
of definition

‘%;Mole cules

<

——

{J

Explicit concepts

QdEntity

aNoArgsConstructor(force = true)
dEqualsAndHashCode(of = "id")
oTable(name = "SAMPLE ORDER")
aGetter

public class Order {

private final @EmbeddedId OrderId id;

a0neToMany(cascade = CascadeType.ALL)
private List<LineItem> lineltems;
private CustomerId customerlId;

public Order(CustomerId customerId) f{
this.id = OrderId.of(UUID.randomUUID());
this.customerId = customerId;

aValue

ORequiredArgsConstructor(staticName = "of")

aNoArgsConstructor(force = true)

public static class OrderId implements Serializable {
private static final long serialVersionUID = .. ;
private final UUID orderId;

}

public class Order implements 0.j.d.t.AggregateRoot<Order, OrderId> {

public static class OrderId implements o.j.d.t.Identifier {

o

Verification

Verifying a jMolecules Aggregate ... in JQAssistant

<plugin>
<groupId>com.buschmais.jgassistant</groupId>
<artifactId>jgassistant-maven-plugin</artifactId>
<version>..</version>
<executions>
<execution>
<id>default-cli</id>
<goals>
<goal>scan</goal>
<goal>analyze</goal>
</goals>
<configuration>..</configuration>
</execution>
</ executions>
<dependencies>
<dependency> f
<groupId>org.jgassistant.contrib.plugin</groupId>
<artifactId>jgassistant-jmolecules-plugin</artifactId>
<version>..</version>
</dependency>
</dependencies>

</plugin>

_ Simply execute the
predetined rules

Verifying a jMolecules Aggregate ... in ArchUnit

mAnalyzeClasses(packagesOf = Application.class)
class ArchitectureTests {

anArchTest
ArchRule ddd = JIMoleculesDddRules.all();

}

Simply execute the
predefined rules

gJ| *Orderjava X
4 E_—‘,’~ arch-evident-spring b &% src/mainfjava P # example.order » @ Order P

~ 45 gGetter
46 public class Order implements AggregateRoot<Order, OrderIdentifier> {
47
48 private final OrderIdentifier id;
© 49 private final Customer customer;
50 private Status status;
51
52 private final List<LineItem> lineItems = new ArraylList<();
53

54= public Order(CustomerIdentifier customerId) {

55
56 this.id = new OrderIdentifier(UUID.randomUUID());
57 this.status = Status.OPEN;
® 58 this.customer = null;
50 }

[E:L) Problems X @@ Javadoc Q Error Log & Progress < Search ¥ PlantUML :-'0 Call Hierarchy |=a Coverage DTG Junit (@) Boot Dashboard ,)El Terminal Ejj History E Console

3 errors, 0 warnings, 0 others

Description Resource ~ Path

v €9 Errors (3 items)

€ Invalid aggregate root reference! Use identifier reference or Association instead! Order.java Jarch-evident-spring/src/main/java/exam

¢ Invalid aggregate root reference!
_/ Use identifier or Association instead!

+

O

Eliminate
boilerplate

» Spring Framework

e ,
Domain | {)} e o jchkson

Application

Infrastructure

Model character
expressed Implicl

or through
technical means

QEntity L
aNoArgsConstructor(force = true)
nEqualsAndHashCode(of = "id")
aTable(name = "SAMPLE ORDER")
aGetter

public class Order {

}

- 00neToMany(cascade = CascadeType.ALL)

| private CustomerId customerId;

private final @EmbeddedId OrderId id;

N\

- JPA-induced
bollerplate

private List<LineItem> lineltems;

public Order(CustomerId customerId) f{
this.id = OrderId.of(UUID.randomUUID());
this.customerId = customerId;

} ,,'/) 4 /
aValue
oRequiredArgsConstructor(staticName = "of")
aNoArgsConstructor(force = true) &
public static class OrderId implements Serializable { |
private static final long serialVersionUID = ..; &
private final UUID orderlId;
}

QdEntity

aNoArgsConstructor(force = true)
dEqualsAndHashCode(of = "id")
oTable(name = "SAMPLE ORDER")
aGetter

public class Order implements AggregateRoot<Order,

private final @EmbeddedId OrderId id;

a0neToMany(cascade = CascadeType.ALL)
private List<LineItem> lineltems;
private Association<Customer,

— = —

public Order(CustomerId customerId) f{
this.id = OrderId.of(UUID.randomUUID());
this.customer = Association.forId(customerId);

e

aValue

aARequiredArgsConstructor(staticName = "of")
aNoArgsConstructor(force = true)

public static class OrderId implements Identifier {

private static final long serialVersionUID = ..;
private final UUID orderId;

}

oTable(name = "SAMPLE ORDER")
aGetter
public class Order implements AggregateRoot<Order, OrderId> {

private final OrderId id;

private List<LineItem> lineltems;

private Association<Customer, CustomerId> customer;
public Order(CustomerId customerId) f{

this.id = OrderId.of(UUID.randomUUID());
this.customer = Association.forId(customerId);

aValue
aRequiredArgsConstructor(staticName = "of")
public static class OrderId implements Identifier {

private final UUID orderId;
}

[INFO]
 INFO]
[INFO]
 INFO]
[INFO]
 INFO]
[INFO]
 INFO]
[INFO]

example.order.Order

JPA - Adding @j.p.Entity.

JPA - Adding default constructor.

JPA - Adding nullability verification using new callback methods.

JPA - Defaulting id mapping to @j.p.EmbeddedId().

JPA - Defaulting lineItems mapping to @j.p.JoinColumn(..).

JPA - Defaulting lineItems mapping to @j.p.0OneToMany(..).

Spring Data JPA - Implementing o.s.d.d.Persistable<e.o.0rder$OrderIdentifier>.
Spring JPA - customer - Adding @j.p.Convert(converter=..).

aTable(name = "SAMPLE ORDER")
aGetter
public class Order {

private final mawmoes

private List<LineItem> lineltems;
private CustomerId customerId;

public Order(Customer customer) {
this.id = OrderId.of(UUID.randomUUID());
this.customerId = customer.getId();

— N _ " e = e

private final UUID orderlId;

= — = = = A _ ———— 2 = —="I=2 _ T - %2 L -7 - - - LB
(] - =) ~ . == T2 —ifl - =0

aTable(name = "SAMPLE ORDER")
aGetter

public class Order implements AggregateRoot<Order, OrderId> {

private final OrderId id;
private List<LineItem> lineltems;
private Association<Customer,

CustomerId> customer;

public Order(CustomerId customerId) f{

this.id = OrderId.of(UUID.randomUUID());

this.customer

aValue(staticConstructor = "of")
public static class OrderId implements
private final UUID orderId;

}

‘Association.forId(customerId);

;dentifieq‘{

e

lE

Separation of Concerns
Architectures

Domain Application Infrastructure

Domain

Application

Infrastructure

Domain Domain

Application Application

Infrastructure Infrastructure

Domain

Application

Infrastructure

Domain

Application

Infrastructure

Domain Domain Domain

Application Application Application

Infrastructure

Infrastructure

Infrastructure

Domain Domain Domain

Application Application Application

Infrastructure

Infrastructure

Infrastructure

{31 <h>

Domain Domain Domain

Application

Application Application

Infrastructure

g &

Infrastructure Infrastructure

85 & 8

Module Module Module

S
P
r
in
4
Mod
u
[
ith

package com.acme.modulith

@SpringBootApplication
class MyApplication

Standard Spring Boot Application

N AN

Package Conventions

APl packages
...modulith "
4/

...modulith.moduleA

...modulith.moduleA.internal Access to components

. c residing in internal packages
...modulith.moduleB <— A

...modulith.moduleB.internal during tests.

package com.acme.modulith

@SpringBootApplication
class MyApplication

Standard Spring Boot Application

var modules =
ApplicationModules.of(MyApplication.class);
modules.verify(..);

Verifies rules for MyApplication

Module A Module B Module C

Web
@WebMvcTest

Business logic

Data access
@Data..Test

@ApplicationModuleTest

My Component

Provided Interface

© Exposed Service API

Spring Beans available for DI

© Exposed Aggregates

Primary elements of the domain and constraints

© Published Events

Events the component emits

Required Interface

© Consumed Service API

External dependencies of Spring beans

© Configuration
Spring Boot configuration properties

© Consumed Events
Events that the component reacts to

Salespoint

«Component: Module »

«Component: Module»
Salespoint :: Inventory

Salespoint :: Accountancy

I _ Z \ <
| ~ listens to ~ _ - listensto \ N
/ =~ - - s \ N\
/ | s = V< \ \
/ | < \
/ 'depends on 2 uses «Component. Moduie» \depends on ’ depends on «Component: Module>
// | 7 Salespoint :: Order ‘l \\ Salespoint :: Storage
/ ! / _ - 7 I\ S~ | \ PEe
/ I| // - - s I \\ o - ! \\ - g
P - Ve I = ~ -
I'depends on | _+~ dependson - uses | ~ depends on ~ - \dg\bends on \ - /depends on
| | _ -7\ ’ / N ST~ \ Phd
A4 LT | g / T A | o N yad
| ‘ -
/
\
\ «Component: Module» «Component: Module» / depends on «Component: Module» «Component: Module»
\ Salespoint :: Catalog Salespoint :: Time // Salespoint :: Payment Salespoint :: User Account
\ I '/ 7/
\ | P
\ | _
N depends on 7
7~
AN | _ -
AN -
A \ 4 _ -

«Component: Module» < ~
Salespoint :: Quantity

Sales

point :: Inventory

«Component: Module»
Salespoint :: Inventory

N
N
N\

|
|
:Iistens to
|

Y

«Component: Module»

I' depends on Salespoint :: Order
\ Vg
\ 7
\ ’aepends on
\ /
\ /
~ |

«Component: Module»
Salespoint :: Catalog

depends on

\
\
\

~ depends on

N

N

/
/

|
I
|
|
|
|
|
|
|
|
I
I
| /

| /

S\ v ¥

«Component: Module»
Salespoint :: Quantity

\

\

|
l

|
/

\
\

|
I
|
|

,’depends on

Base package org.salespointframework.useraccount

Spring components Services

e 0.S.uU.UserAccountManagement (via
0.S.U.PersistentUserAccountManagement)

Others

e 0.S.u.AuthenticationManagement (via
0.S.U.SpringSecurityAuthenticationManagement)

Aggregate roots e 0.S.U.UserAccount

Value types * 0.S.uU.EncryptedPassword
e 0.S.uU.UnencryptedPassword

e 0.S.U.Role

Published events e 0.S.U.UserAccountCreated created by:

o 0.S.U.UserAccount.onCreate()

Properties e salespoint.authentication. login-via—-email —
java. lang.Boolean, default false. Enables the login procedure to
use the email address to lookup a user instead of their username. Defaults
to false.

Architectural concepts...

.. are explicitly expressed in the code.

.. are predefined based on established pattern languages.

.. are defined by jMolecules (concepts)
and tool & framework integration (rules).

Architecturally Evident Applications
— How to Bridge the Model-Code Gap?

Oliver Drotbohm (odrotbohm@vmware.com) in collaboration with
Henning Schwentner (henning.schwentner@wps.com) & Stephan Pirnbaum (stephan.pirnbaum@buschmais.de)

February 2022

Abstract

Over the course of its lifetime, every non-trivial piece of
software will significantly grow in complexity. The
extent of that growth significantly affects the ability to
evolve it to avoid having to replace it with a costly
rewrite eventually. Thus, managing that complexity has
been the topic of interest in the software community, and
architectural and design pattern languages have been
identified as a means to achieve that. But even if the
conceptual models of an application use that language, a
fundamental challenge remains: how to express those
abstract concepts in the actual codebase?

This paper explores a novel approach that enables
developers to explicitly express architectural and design
concepts in application code, which ultimately enables:

o Understandability — By finding the architectural
language in code, it is easier for developers to
understand the code base, relate individual elements
of it to the bigger picture and, ultimately, make
architecture more accessible.

® Documentation — With abstract concepts present in the
code base, we can extract documentation about it that
is correct by definition and describes it at an
architectural abstraction level.

o Verification - We can verify that our implementation
adheres to the rules associated with the concepts that
the individual elements of the code base implement at
different levels of architectural abstraction.

® Reduction of boilerplate code — At the application
boundaries, domain model elements have to be
persisted into some data store or exposed to clients by
APIs. Architectural concepts, directly expressed in
those elements, allow transparently defaulting such
mappings into popular implementation technologies.

This paper presents the fundamental idea in detail, as
well as a Java library to express architectural and design
concepts, and contrasts it to alternative approaches. It
concludes with a presentation of the support of that
library in a variety of associated integration technologies
to implement the aspects described above.

Introduction

Bridging the gap between architectural patterns and
code bases has been an ongoing challenge when writing

long-living business software. We would like to present
an approach to express these patterns directly in code by
using programming-language-specific means and
describe how that approach becomes an enabler to create
code that is more expressive, more understandable,
more correct and ultimately easier to change. The paper
uses Java as an example because it is a very ubiquitous
language in enterprise applications. However, the
approach can be transferred to other languages, too.
Over the last 1.5 years, a prototypical implementation
has been implemented in a cross-company collaboration
effort between VMware, WPS Solutions (Hamburg)
BUSCHMAIS (Dresden). It can be found under a pr¢
named jMolecules on GitHub [jmolecules].
Fundamentally, we need a mechanism to express
architectural artifacts in the codebase. In Java, two
primary language constructs are great candidates t
achieve this: annotations and types. We will have a
detailed look at the pros and cons of each later.
jMolecules currently provides annotations for the
following architectural concepts: the Domain-Driv:
Design (DDD) building blocks described in [evanso
events and event listeners, and the parts of particu
architectural styles, such as onion architecture
[palermoo8], layered architecture, and CQRS systet
The DDD and event concepts are also available as J:

interfaces alternatively.

Developers can refer to the concept library in their
application build files so that the architectural
definitions become an inherent part of the code base.
This results in more expressive code that has a more
direct connection to the architectural model in the first
place and, thus, supports understanding the
implementation. The metadata available within the code
enables extensive integration with external technology
to verify the implementation against the model
expressed in the code and extract architecture and
developer documentation. To run on ubiquitous
technical platforms (such as Spring Framework [spring])
and integrate seamlessly with persistence technology
(such as the Jakarta Persistence API(JPA)[jpa] or
commonly used serialization APIs like Jackson
[jackson]), domain code usually has to be augmented
with boilerplate code, like annotations or additional
models which significantly increases the accidental
complexity of applications.

YW @mawspring

Links

© xMolecules
https://xmolecules.org

© jMolecules

https://jmolecules.org

© jMolecules Examples
https://github.com/xmolecules/jmolecules-examples

© Gitter - Join the community!
https://gitter.im/xmolecules/xmolecules

https://xmolecules.org
https://jmolecules.org
https://github.com/xmolecules/jmolecules-examples
https://gitter.im/xmolecules/xmolecules

Resources

© Software Architecture for Developers
Simon Brown — Books

© Just Enough Software Architecture
George Fairbanks — Book

© Architecture, Design, Implementation
Ammon H. Eden, Rick Kazman - Paper

© Sustainable Software Architecture
Carola Lilienthal - Book

© The Programmer’s Brain
Felienne Hermans - Book

https://leanpub.com/b/software-architecture
https://www.amazon.de/Just-Enough-Software-Architecture-Risk-Driven/dp/0984618104
https://resources.sei.cmu.edu/asset_files/WhitePaper/2003_019_001_29559.pdf
https://www.amazon.de/Sustainable-Software-Architecture-Analyze-Technical/dp/3864906733
https://www.amazon.de/Programmers-Brain-Every-Programmer-Cognition/dp/1617298670/ref=sr_1_1?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=3AVV87XAXBK8E&keywords=the+programmer's+brain+hermans&qid=1642693390&sprefix=the+programmer's+brain+hermans,aps,91&sr=8-1

Thank you!
Questions?

Oliver Drotbohm W) ®@ odrotbohm & oliver.drotbohm@broadcom.com

